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PREFACE 

This repor t  is divided i n t o  fou r  sec t ions .  The f irst  two sec- 

t i o n s  are concerned with applying optimization techniques t o  t h e  cont ro l  

of t h e  fuel valve system for an air-breathing j e t  engine, 

r epor t ,  a system design which was re fe r r ed  t o  as a modified observer 

system was discussed. 

series compensator whioh was one order less than t h e  p l an t  and a feed- 

back compensator of t h e  same order as t h e  series compensator. 

design which r e su l t ed  d id  not include a spec i f i ca t ion  of t he  poles of 

the  feedback compensator. 

back compensator is t h e  subjec t  of t h e  first two sec t ions .  

posi t ions must be chosen so t h a t  t he  feedback compensator and the  series 

are both stable. 

the  optimization process. In  addi t ion ,  t he  poles  should be chosen so 

t h a t  t h e  system has a low s e n s i t i v i t y  t o  changes i n  t h e  parameters of 

t h e  p lan t .  

attempting t o  minimize. 

In  t h e  last 

The r e s u l t i n g  cont ro l  system consisted of a 

The 

The spec i f i ca t ion  of the  poles of t h e  feed- 

The pole 

This r e s t r i c t i o n  imposes an inequal i ty  cons t ra in t  on 

T h i s  requirement is t h e  objec t ive  function which we are 

The first procedure of t h i s  repor t  uses the  Sequential Uncon- 

s t r a ined  Minimization Technique. 

inequal i ty  cons t ra in ts  i n t o  t h e  objec t ive  function and minimizes t h i s  

function subject t o  t h e  equal i ty  cons t r a in t s  which r e s u l t  from t h e  

modified observer design. 

of t h e  feedback compensator t o  the  poles of t h e  series compensator. 

This procedure incorporates t he  

These equa l i ty  cons t r a in t s  relate the poles 

iii 
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The f i n a l  r e s u l t  These re la t ionships  were discussed i n  t h e  last repor t .  

is a design which has  a small low frequency s e n s i t i v i t y ,  r e a l i z e s  t h e  

desired closed-loop t r a n s f e r  funct ion,  and r e s u l t s  i n  stable compensator 

t r a n s f e r  functions.  Two such designs are presented. 

eighth roder  t r a n s f e r  function, and one is f o r  a seventh order  t r a n s f e r  

function. 

One is for an 

The second procedure which is addressed t o  t h e  f u e l  valve prob- 

lem incorporates a d i f f e r e n t  optimization procedure which is called t h e  

method of Parallel Tangents or PARTAN. 

t o r  search i n  a d i r ec t ton  which is orthogonal t o  a l l  t h e  previous 

searches. 

gradients  a r e  d i f f i c u l t  t o  evaluate.  

t h e  object ive function is quadrat ic  or neai ly  quadrat ic .  

dure, a design is obtained which is d i f f e r e n t  f r o m  t he  first but  would 

s t i l l  be a usefu l  design for t h e  f u e l  valve servo. 

This procedure constructs  a vec- 

This procedure is usual ly  more e f f e c t i v e  than the  first one 

It is espec ia l ly  e f f ec t ive  when 

In  t h i s  proce- 

The last two optimization procedures are applied t o  t h e  40-60 

i n l e t  cont ro l  problem 

the  shock wave in t he  i n l e t  t o  pressure disturbances from t he  compressor 

s ide  of the  i n l e t .  

optimize t h e  feedback compensator between the  ex i t  pressure and t h e  

bypass doors. The search procedure starts with an i n i t i a l  choice of 

parameters for t h e  compensator and makes changes i n  these parameters 

u n t i l  an improvement is obtained. 

are continued i n  the  same d i r ec t ion  u n t i l  no f u r t h e r  improvement is pos- 

s i b l e  and the  process is repeated u n t i l  even very small s t eps  do not 

This problem e n t a i l s  minimizing the  response of 

The first procedure u t i l i z e s  a Pa t te rn  Search t o  

If an improvement is obtained, s t eps  
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r e s u l t  i n  an improvement. 

the  bes t  numerator of the  feedback compensator with two zeros. 

This pa r t i cu la r  appl icat ion was t o  determine 

The last  sec t ion  uses the  Variable Metric optimization procedure 

The Variable Metric t o  determine the  bes t  cont ro l  system f o r  t h e  i n l e t .  

procedure assumes t h a t  t h e  ob jec t ive  function is nearly quadratic and 

determines the  optimum i n  one less s t ep  than the  number of parameters if 

t h e  object ive function is quadratic.  This procedure is espec ia l ly  use- 

f u l  when the  gradients  of the  object ive funct ion are readi ly  ava i lab le .  

As i n  t he  procedure above, the  s t r a t egy  seeks t o  force  the  to ta l  closed- 

loop response of the  system t o  match a desired frequency response over a 

range of frequencies.  The objec t ive  function is the  t o t a l  squared e r r o r  

over t h i s  range of frequencies. 

achieved f o r  a var i e ty  of parameter values. 

A physically r ea l i zab le  cont ro l  is 



SEQUENTIAL UNCONSTRAINED MINIMIZATION 

Introduction 

It is the object of this section to show that the fuel valve 

servo problem may be solved by conventional optimization techniques. 

Specifically, the fuel valve servo problem is shown to be equivalent to 

the problem of minimizing a nonlinear objective function y(x) subject to 

both equality and inequality constraints (i.e., a nonlinear programming 

problem 1. 

To help solve this problem a technique is considered (the 

sequential unconstrained minimization technique or SUMT) which concerns 

minimization in the presence of inequality constraints. 

procedure a new objective function Y(X,r) is selected such that its 

In the SUMT 

minimization will yield a solution X*(r) (the* indicates the best 

choice) which satisfies the inequality constraints. 

approaches zero, X*(O) becomes the value of xk which minimizes the ori- 

ginal objective function y(X), while satisfying the various inequality 

Then as r 

constraints. We then may consider rthe minimization of Y(X,r) subject to 

some additional set of equality constraints. The introduction of equal- 

ity constraints means that not all N of the variables X are independent. 

A technique for accomplishing minimization in the presence of 

equality constraints is the constrained derivative or Jacobian technique. 

If there are N variables and Ns constraints, one may obtain a set of N 

equations in N unknowns where the first (N-Ns) equations are constrained 

derivatives (to be equal to zero when the minimum is achieved) and the 
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Combining both the remaining Ns equations are the equality constraints. 

SUMT method and the constrained method, we then obtain a set of N equa- 

tions in N unknowns which, when solved, yields a value X*(r) which sat- 

isfies both the equality constraints and the inequality constraints 

while minimizing Y(X,r). 

which minimizes y(X) while satisfying all the equality and inequality 

constraints. 

a Newton Raphson method is used and extensive use is made of digital 

computers. 

Then, as r approaches zero, X*(r) approaches X 

In order to solve the N nonlinear equations in N unknowns, 

Alternate procedures for solving the fuel valve problem fall 

into two categories, namely different ways of solving the optimization 

problem or alternate expressions (strategies) concerning the basic prob- 

lem. 

Powell) are difficult to apply in the presence of the many equality con- 

straints. Alsb, alternate strategies for attacking the fuel valve prob- 

It is felt that other optimization techniques (PARTAN, Fletcher 

lem which consider the equality constraints must somehow treat the 

inequality Constraints. The above procedure is straightforward, but, as 

will be shown concerning the computer program, coding for high dimension 

problems can be a tedious job. 

In the remainder of this section, the optimization procedures 

are presented, the algorithm for solving the fuel valve problem is 

derived, the computer program is discussed, results are presented and 

conclusions are drawn. 
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Optimal Procedure 

Suppose t h a t  we wish t o  minimize t h e  objec t ive  function y(x)  sub- 

ject t o  a se t  of N inequal i ty  cons t r a in t s  G ( X )  2 0 each of t h e  form 

where 

i = l,Z,...,N. 

T h i s  problem may be solved by considering a dual  problem, namely mini- 

mizing t h e  funct ion 

Suppose t h a t ,  for some choice of r ,  some gi(x) are pos i t ive  and la rge ,  

and the  rest are near zero. The l a rge  pos i t ive  ones w i l l  contr ibute  

l i t t l e  penalty to  the  function Y ( X , r )  while t h e  gi(x) which are near 

zero w i l l  contr ibute  heavily. Considec, f o r  a f ixed c, those x t h a t  

cause 

The r e s u l t i n g  x is such t h a t  L ( X , r )  is a minimum f o r  each value of r; 

hence we can ca l l  t h e  so lu t ion  X * ( r ) ,  t h a t  is, t h e  bes t  choice of X for 

each value of r. 

region G ( X )  2 0, and, after solving aL/ax = 0 for some fixed r ,  one 

then takes  the  r e s u l t i n g  fi(r) as a s t a r t i n g  point for a new minimization 

If one considers only X i n  t h e  allowable ( f e a s i b l e )  
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procedure with a lower value of r: 

minimizing a series of unconstrained objec t ive  functions L ( X , r )  having 

decreasing values of F f o r  each successive s t e p  i n  the  process. 

t h i s  technique is ca l led  the  sequent ia l  unconstrained minimization teeh- 

nique, abbreviated SUMT. 

one has a sequent ia l  process f o r  

Hence, 

The end r e s u l t  is t h a t  

LZMIT X * ( r )  = X*(O) 
r-*o 

where X*(O) is the  value of X which minimizes y(X) subject t o  the  con- 

s t r a in ing  equations G ( X )  2 0 .  

L e t  us now drop the  subscr ip t  r ,  thus assuming r to  be f ixed f o r  

each sequence of unconstrained minimization process and consider t h e  

more genera3 case where t h e  N var iab les  X are not  independent; t h a t  is, 

there  e x i s t s  a se t  of Ns equal i ty  cons t r a in t s  F(x) = 0 each of t he  form 

where 

There are now Ns dependent var iab les  ( l e t  us  def ine these as state v w i -  

ables s) and N-Ns independent var iab les  ( l e t  us define these as decis ion 

var iab les  d ) .  Then t h e  state var iab les  s depend on d. 

one has the  s i t u a t i o n  shown below for t h e  interdependency of t h e  var i -  

ables .  

Diagrammatically, 

Arrows ind ica t e  one va r i ab le  influencing another. 
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+ s  
Y +  

4 d  
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F f  

+ d  

In order  t o  minimize t h e  object ive function Y(s,d) is necessary t h a t  t he  

der iva t ive  of Y with respect  t o  the  independent var iables  d is zero. We 

know t h a t  the der iva t ive  of the  equation F(x) = 6 with respect  t o  t h e  

independent var iab les  must be zero; hence, we have t h e  following N equa- 

t i ons  i n  N unknowns using t h e  chain r u l e  of d i f f e ren t i a t ion  

The d i f f i c u l t y  in solving t h e  above lies i n  obtaining S(&) which for 

nonlinear cons t ra in t  equations ,is a formidable t a sk .  Hence, CdS(d)]/dd 

can be solved for i n  Eq. (7 )  and subs t i tu ted  i n t o  Eq. (6) giving t h e  

following N-Ns equations i n  N unknowns 

This r e s u l t  is ca l l ed  the  constrained der iva t ive  of L with respect  t o  d.  

If w e  include t h e  Ns cons t ra in t  equations 

we have, i n  Eqs. (8 )  and (91, a set of N equations i n  N unknowns, a l l  

t h e  elements of which are read i ly  ava i lab le  from the  object ive function 

and the  equal i ty  cons t ra in ts .  
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The technique se lec ted  f o r  solving the  above system of equations 

is t o  write a Taylor series expansion f o r  t h e  N equations, t o  take only 

the linear terms and then t o  solve for . The r e s u l t  is the  Newton- 

Raphson i t e r a t i v e  procedure. An i n i t i a l  guess [:E] is assumed. Then a 

b e t t e r  estimate of [:) is obtained, and the  process is repeated. Once a 

value of [z] r e s u l t s  which s a t i s f a c t o r i l y  solves  the  above set of equa- 

t i ons  for a f ixed  value of r [see Eq. (213, we can ca l l  t he  r e s u l t  

[:I 

Then, repeat ing the  process for  even lower values of r ,  w e  E:::;] 
note t h a t  

where f i  is the  value of X which minimizes the  o r i g i n a l  object ive func- 

t ion y(X) subjec t  t o  the inequal i ty  cons t ra in ts  G ( X )  2 0 and t h e  equal- 

i t y  cons t ra in ts  of F(X) = 0. 

following equation: 

The Newton-Raphson approach r e s u l t s  i n  the  

Note t h a t  the  Newton-Raphson algorithm [Eq. (lo)] requires  t h e  evalua- 

t i o n  of the  p a r t i a l  der iva t ives  of - dY dd 
the  p a r t i a l  der iva t ives  of t he  second term on the  r i g h t  s i d e  of the  

equation are r a t h e r  involved; hence, per turbat ion techniques are used t o  

compute them. 

although somewhat teduous t o  der ive.  

From Eq. ( 7 )  it is evident t h a t  

All other  p a r t i a l s  and equations are r ead i ly  ava i lab le ,  
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It is now i n  order t o  redef ine  t h e  above algorithm ( s t a t ed  i n  

optimization terms) and use s p e c i f i c  equations for t h e  f u e l  valve servo 

study. 

lem i n  a form s u i t a b l e  for t he  f u e l  valve servo. 

and state var iab les  become 

The following change of var iab les  adequately describes the  prob- 

The decis ion variables 

d = PR 

s = CR 

The dual  object ive funct ion,  including ineqr 

f ixed  r is defined 

n 

(11) 

a l i t y  cons t r a in t s ,  for a 

Final ly ,  the  equal i ty  cons t ra in ts  are defined 

I n  Eq. (131, TI) and T6 are matrices o f  constants ,  while C is a vector  

quant i ty ,  each element of which depends only on the  vector CR, and P is 

a vector  quant i ty ,  each element of which depends only on t h e  vector PR. 

The above choice of Eqs. (111, (121% and (13) is made clear i n  a subse- 

quent paragraph of t h i s  sec t ion  i n  which t h e  f u e l  valve servo problem is 

discussed. For now, it is s u f f i c i e n t  to  t ake  t h e  above equations and 

s u b s t i t u t e  them d i r e c t l y  i n t o  Eq. (10). The r e s u l t  of t h i s  is 
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In  Eq. (14)  

Note from the  above t h a t  it is necessary t o  obtain t h e  p a r t i a l  deriva- 

t i v e s  of A; hence, per turbat ion techniques are suggested whereas a l l  

o ther  p a r t i a l s  are read i ly  ava i lab le  although tedious t o  der ive.  

A computer program was wr i t ten  t o  faci l i ta te  t h e  above Newton- 

Raphson i t e r a t i v e  procedure. 

Computer Program for t h e  Design Procedure 

The computer program has two d i s t i n c t  pa r t s .  The first pa r t ,  8 

submut ine  (RDR), sets up the  matrices shown i n  Eqs. (14) and ( 1 5 ) .  

These equations may be compactly wr i t ten  as 
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The first p a r t  of t he  program, then, obtains  the  matrix DR and the  vec- 

tor R given the  vector  Xo. 

program NWRP) obtains  p(r)] CRn(r) by solving for DR-' R using Gauss-Jordan 

elimination r a t h e r  than invert ing DR d i r ec t ly .  

The second part of the  program ( t h e  main 

Fig. 1 shows the  flow diagram f o r  subroutine RDR, The le t ters  

ftA1f through "U" are used for reference and correspond t o  those s imi la r ly  

marked portions of t he  program shown i n  t h e  l i s t i n g  i n  Appendix A .  

In  "A" through "F" t he  program obtains  P(PR) and dP when K = 1 

Dumy var iab les  Q and - dQ are used with 
dCR dQR and C(CR)  and 

Q = PR for K = 1 and Q = CR for K = 2. This facet of t he  program makes 

use of t h e  fact t h a t  t h e  polynomial coe f f i c i en t s  P(PR) and C(CR) are of 

t he  same form. In  general ,  t h i s  might not be t h e  case. 

In  "H" through "K" the  matrix A CEq. (1511 is evaluated. 

when K = 2 .  

In "L" 

ffL" through a A  through I1Qfl t he  matrix DR is calculated except for m. 
I I Q ' l  is used only once f o r  each time RDR is ca l l ed  ( t h a t  is, when the  

counter n = 1). 
3A Xn "R" through "TI' is evaluated by perturbing the  var i -  

A counter n is varied from 2 t o  (N - Ns i 1) t o  per turb ab les  PR and CR. 

the  N - Ns decis ipn var iables  PR (using "R" and % I 1 )  and from (N - Ns + 1) 
t o  (N + 1) t o  vary t h e  Ns state var iab les  GR (using "R" and ''T''). 

numbers shown i n  t h e  decision blocks refer t o  a case where N = 1 2  and 

The 
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F i g .  1. Flow Diagram of Subroutine RDR. 
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Fina l ly ,  when the  counter n = N + 3 ,  t he  matrix DR is completed 

i n  "Utl and R and DR me returned t o  the  main program. 

noted t h a t  a l l  equations other than t h e  l og ic  must be changed f o r  each 

appl ica t ion  of t h i s  program. 

It should be 

It is t h e  job of t h e  main program (NWRP) t o  monitor t h e  Newton- 

Raphson procedure for solving the  N equations in N unknowns. 

diagram for NWRP is shown i n  Fig. 2.  

i n i t i a l  values of r [Eq. (213,  Xo, and the  matrices Tq and T6 [Eq. (1611. 

Then NWRP calls RDR and p r i n t s  out t h e  usefu l  r e s u l t s .  

measure of how well t h e  equal i ty  cons t r a in t s  are met) is "small", a 

lower value of r is selected ( u n t i l  some minimum r value is reached). 

If t h e  e r r o r  is "large", one i terates up t o  150 i t e r a t i o n s  and counts 

successive increases  i n  t h e  error. Eq. (16) is solved for (DR- l IR  by 

c a l l i n g  a subroutine INVERT i n  which DR and R are adjoined ( e  .g. , [DRIRJ) 
and row and column (Gauss-Jordan$ elimination is done by seeking maximum 

p ivo ta l  elements, thus  minimizing t h e  effects of zero p ivo ta l  elements, 

A flow 

It is necessary t o  input t o  NWRP 

If t h e  error (a 

round off,  and ill conditioning, The main program also checks t h e  pos- 

s i b i l i t y  t h a t  Eq. (16) might r e s u l t  i n  a negative (forbidden) value for 

one of the  var iab les .  An a r b i t r a r i l y  small pos i t i ve  member rep laces  any 

r e s u l t i n g  negative value, thus adding considerable penalty t o  t h e  objec- 

t i v e  function [Eq. (211. 

of Xfg(c) and t h e  process is repeated. 

F ina l ly ,  Xo is replaced with t h e  newest value 

In  essence, t h e  end r e s u l t  of one 

computing cycle  is X30(r). 

independent var iab les  PR, t h e  dependent var iab les  CR, t h e  vector R [Eqs. 

(14) and (1611, t h e  functions P(PR), C(CR), t h e  values of C(CR) t h a t  

The p r i n t  statements ca l l  for, i n  order, t h e  



TART NWRP 12 

ERROR 
- Ni R(i) - m  . xo = x 

I 

i=1 

PRINT 
PR,CR,P,R,C, 

ThP+T6,ERROR,L(PR,CR) 

MAKE NEG. 
X's = .001 

i 

CALL INVERT 

Fig. 2. Flow Diagram of Main Program (NWRP). 
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exactly satisfy the equality constraints (e.g., C(CR) = [T4]P(PR) + T6), 

the error (with regard to the equality constraints), and the objective 

function L(PR,CR) [Eq. (1411. 

It will now be shown that the fuel valve servo problem may be 

structured as suggested in Eqs. (11) through (13) so that Eqs. (14) and 

(15) (and the program N W )  may be used to obtain the design. , 

Application to the Fuel Valve Servo Problem 

In the fuel valve servo problem, it is necessary to design a 

control system utilizing series and feedback compensation (Fig. 3). 

We are given the polynomials GN(S) and GD(S) for the open loop 

plant and the polynomials TN(S) and TD(S) for the desired closed loop 

transfer function. 

be chosen to complete the design (equality constraints). 

since the system must be realizable and reasonably insensitive to dis- 

turbances, the polynomials P(S)  and C ( S )  must contain only left half 

plane roots (inequality constraints). One immediate question is: How 

can we ensure that P(S) and C(S)  contain only left half plane roots, 

and, if possible, can we obtain some real valued variables to use later 

in the optimization process? 

the third order case for the polynomial P(S). 

treated in exactly the same manner. 

The remaining polynomials P(S), C ( S ) ,  and H(S) must 

Moreover, 

Consider the following decomposition of 

Note that C(S)  can be 

3 2 2 P(S) = s .) P*S + PIS t Po = (S + P2*)IS t PllS + P 1 (17) 10 

Any order polynomial P(S) OF C(S1 may be similarly decomposed into the 
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product of seve ra l  second order polynomials and, i f  t he  o r i g i n a l  polynom- 

i a l  is of an odd order ,  one first order polynomial. In general ,  a poly- 

nomial such as P ( S )  or C(S) contains p a i r s  of real roots and/or pa i r s  of 

complex conjugate roots as w e l l  as one addi t iona l  real root i f  the poly- 

nomial is of odd order.  The conclusion to  be reached is t h a t  coef f ic i -  

en ts  such as P20,  Pll, and Pl0 are real valued, and if pos i t i ve ,  t h e  

and Po must have a l l  l e f t  half  p1 polynomial P(S) with coef f ic ien ts  P2, 

S plane roots .  

poles are e a s i l y  found i f  desired.  

Additionally,  i f  P20, Pll, and Pl0 are known, the  ac tua l  

The following de f in i t i ons  are made: 

P = Coeff ic ients  of P ( S )  ( i .e . ,  P p ,  PI, Po) 

PR = Coeff ic ients  such as P2*, 51' p.lo 

cll' 5 0  CR = Coefficients such as Cz0, 

H = coefficients of H(S) 

The le t te r  "R" i n  PR and CR shows t h a t  these coefficients are ind ica t e r s  

concerning the  roo t s  of P(S) and C(S) (i.e.,  i f  the  PR and CR are p o d -  

t i v e ,  a l l  the  roots of P(S) and C(S)  have negative real parts). 

var iab les  X t o  be used i n  t h e  optimization process may now be chosen t o  

be t h e  vector  Et]. Then the  transfer funct ions and are s t a b l e  if 

C, P, and H are of t h e  same order and if  [E:)? 0. Thus, inequal i ty  con- 

s t r a i n t s  of the  form G ( S )  2 0 are defined by 

The 

P 
P 

(3 I (18) 

From Fig. 3, it is evident t h a t  i f  GN(S) = TN(S) ,  then 
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PLANT 

COMPENSATORS 
H(S) m 

Fig. 3. Closed Loop Control System. 



The coefficients of C(S) and H(S) may then be related linearly 

to the coefficients of P(S) to realize the desired transfer function, 

thus providing equality constraints. 

powers of C(S) and P(S) are both one, then the following equality con- 

straints result. 

If the coefficients of the highest 

The coefficients C depend only on the variables CR, 

and the coefficients P depend only on the variables PR. 

Partioning the above we obtain 

0 = C(CR) - [T4p(PR) - T6 

0 = H - [T3]P(PR) - T5 

Since the roots of H are not of particular concern, Eq. 2 

(21) .' 

(22) 

is the 

equality constraint equation linearly relating the coefficients C and P 

but non-linearly relating the variables CR and PR. The above conditions 

require the following relations between the orders of the polynomials 

involved. 

Undetermined (Free 1 
Coefficients Polynomial Order 

TD(S) i 0 

C ( S 1 ,CR( S ) i-1 i-1 

P(S),PR(S) i-1 i-1 

H(S) i-1 i (231 
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Consequently, f o r  an i t h  order r e a l i z a t i o n  problem, thepe are N = 2 ( i - l )  

var iab les  (PR and CR) with N-Ns = i-l independent (decis ion)  var iab les  

and Ns = i-1 dependent (state) var iables .  The var iab les  PR may be con- 

sidered ( a r b i t r a r i l y )  independent while t he  var iab les  CR may be consid- 

ered dependent. 

L e t  us now choose an objec t ive  function y(X1 t o  be t h e  low 
K frequency s e n s i t i v i t y  ST of the  closed loop t r a n s f e r  funct ion,  

t o  changes i n  the  forward loop gain (K). Since 

s h a l l  consider,  has a free S, l e t  us define t h e  

G (SI, for t h e  cases we 

low frequency sens i t i v -  
D 

i t y  as 

The f u e l  valve servo problem for TD(S) of order i may now be 

formulated i n t o  an optimization problem. 

t i v e  funct ion ST (PR,CR) with PR t h e  independent var iab les  and CR t h e  

dependent var iables .  

treated by minimizing a dual  ob jec t ive  function, for a f ixed number where 

r > O .  

We wish t o  optimize t h e  objec- 
K 

The inequal i ty  cons t ra in ts  ( f o r  s t a b i l i t y )  can be 
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There are also i-1 equal i ty  cons t ra in ts .  

Eqs. (251 and (26) are of t h e  form suggested i n  Eqs. (12) and 

(13); hence, Eq. (14) provides an algorithm for f inding the  var iab les  

~~~~~~] and the  NWPR program can be used t o  ca r ry  out t he  algorithm, 

Once acceptab3.e values of PR and CR are obtained, t he  polynomials P ( S )  

and C(S) are determined. 

obtained and the  design is comp3.ete. 

From Eq. (221, t h e  coe f f i c i en t s  of H(S) are 

Two designs were obtained. Fig. 4 shows the  f i n a l  r e s u l t s  for 

TD(S) of order i = 8; hence, there  were 2 ( i - 1 )  = 14 var iab les  ( 7  inde- 

pendent and 7 dependent). 

a t i ons  (43 seconds of central processor time). 

r e s u l t s  f o r  TD(S) of order  i = 7; hence, t he re  were 12 var iab les  (6 

independent and 6 dependent). 

i t e r a t i o n s  (10 seconds of c e n t r a l  processor time). 

fac tory  r e s u l t s  meant t h a t  t he  cons t ra in t  Eq. (21) was s a t i s f i e d  t o  a 

high degree of accuracy. Then t h e  f i n a l  value of P(S) was taken, and 

Eq. (20) was used t o  specify the  f i n a l  values $or C(S) and H(S), thus 

s a t i s f y i n g  the  cons t ra in t  equations exactly with a l l  t h e  roots of P(S) 

and C(S)  i n  t he  l e f t  ha l f  plane. 

Sa t i s fac tory  r e s u l t s  occurred after 119 iter- 

Fig. 5 shows t h e  f i n a l  

Sa t i s fac tory  r e s u l t s  occurred after 33 

In both cases, satis- 

The above r e s u l t s  represent  a stable r e a l i z a t i o n  i n  which a l l  

roots of P(S) and C(S) are w e l l  damped (W.7 ) .  I n  view of t h e  many con- 

s t r a i n t  equations and var iab les  involved, t he  cost of the  computing t i m e  

must be considered minimal compared t o  t h e  cost of man hours required by 
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a t r ia l -and-wros  approach to t he  same problem, 

by the  computer t o  design the  system includes the  cons t ra in t  equation 

matrices i n  Eqs. (20) t o  (221, i n i t i a l  guesses a t  a l l  the  var iables  

(PRj = CR = PO00 was used lor j = 1, b b , . . . ,  i-If, i n i t i a l  value fo r  r i n  

Eq. ( 2 5 )  (r = 5 was used),  and e x p l i c i t  values for a l l  the  p a r t i a l  deriv- 

a t i v e s  appearing i n  Eq. (14) (except for  p a r t i a l s  of A i n  Eq. (as>,  which 

p a r t i a l s  are obtained by perturbing the  var iables  PR and CR). 

The information needed 

j 

Two a l t e r n a t e  approaches were t r i e d  for t he  f u e l  valve servo 

problem. 

the  matrix DR [Eqs. (14) and ( IS) ] .  

Powell technique, DR'l was estimated where i n  the  second, an o r i g i n a l  

approach t o  the problem, a somewhat d i f f e ren t  treatment was attempted. 

Both approaches were aimed a t  simplifying the  calculat ion of 

In  the  f i r s t ,  using a Fletcher- 

The crux of the  Fletcher-Powell appx-oach is t h a t  t he  vector R 

[Eqs. (14) and (1612 is the  gradient vector  €or some object ive function 

Z(X). However, i n  t h i s  case, the vector R cons i s t s  of constrained 

der ivat ives  and equal i ty  constraints .  Pt is P e l t  t h a t  the  fact that R is 

not a gradient vector  explains the  i n a b i l i t y  of the technique t o  converge 

t o  an answer. Brief ly ,  if R were a gradient vector  for  some Z(X), then 

the  following algorithm estimates DR-' and minimizes Z(X) with quadrat ic  

convergence. L e t  H* 0 i n i t i a l  guess of ( D R I ~ ~ ~ - ~ .  

I 
s = -H~RI,, 

LET X = X t 0rS (a is a scalar) 
0 
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THEM X* = Xo + W2S 

&ST HOWTHO 
(DRIx,k) % Ho + - - 

YTH Y 
0 

STY 

REPEAT PROCESS (27)  

The major difficulty in applying the Fletcher-Powell approach 

lies in the one-dimensional gradient search for u*. 

at finding aft so that 

An attempt was made 

A Newton-Raphson technique was used to find a* such that G(@) = 0. 

procedure never did converge to a satisfactory result (satisfying the 

equality constraints). Additionally, the computing time taken by the one- 

dimensional search for aft caused each iteration of Fletcher-Powell to take 

This 

as much time as each iteration of the Newton-Raphson technique in which 

(DRIX0)"' is found directly. 

The second alternate procedure is aimed at satisfying the equality 

A vector R Cas in Eq. ( ~ 1  is so chosen and inequality constraints only, 
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that, if every element is near zero, then all constraints are satisfied, 

and the design is completed. 

As in the Fletcher-Powell case (above) the vector R is neither the gradi- 

ent of an objective function nor a vector of constrained derivatives and 

equality constraints; hence, convergence is not: guaranteed. 

is chosen as follows, where the upper half is chosen to satisfy the equal- 

ity constraints and the bottom half is to satisfy the inequality con- 

straints : 

Also, the matrix DR is simple to compute. 

The vector R 

.L "- 

CRL2 
4 

* 1  -- 
2 

CRi-l 

R =  

Then the matrix DR is 

= 
DR = 3- 

-C(CR) - [T4JP(PR) - T6 
l l  -+- PR1 CRl i 

dP 
OT& m 

I -- 
2 

PR1 . 
I -- 

2 
PRi-l 

1 1 dC 
dCR 
- 

(29) 

(30) 

With the above definitions of R and DR, Eq. (16) can be used to itersa- 

tively obtain the solution [Et:]. The above procedure took 1/3 of the 

computing time per iteration Pequired by the SUMT--constrained derivgtive 

--Newton-Raphson procedure, had far better convergence than d i d  the 

Fletcher-Powell prodedure, but had more erratic behavior than the Sum-- 
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constrained derivative-Newton-Raphson procedure, It is f e l t  t h a t  Eqs. 

(29 )  and (30) hold some promise as a method of solving the  equal i ty  and 

inequal i ty  cons t r a in t ,  but t h a t  t h e  SUMT--constrained derivative-Newton- 

Raphson technique is far superior .  

Summary and Conclusions 

The f u e l  valve servo problem requires  t h e  design of a cont ro l  

system u t i l i z i n g  series and feedback compensation (Fig.  3) .  Given a r e  

the  polynomials GN(S) and GD(S) f o r  t h e  open loop p lan t  and TN(S) and 

TD(S)  €or t h e  closed loop p lan t .  

and H(S) must be chosen t o  complete t h e  design (equal i ty  cons t r a in t s ) .  

The remaining polynomials P(S), C(S), 

Mopeover, s ince  t h e  system must be r e a l i z a b l e  and reasonably in sens i t i ve  

t o  disturbances,  t he  polynomials P ( S )  and ClS) must contain only l e f t  

ha l f  plane r o o t s  ( inequal i ty  cons t r a in t s ) .  The polynomials P(S) and C(S) 

are factored i n t o  first and second order polynomials, and t h e  r e su l t i ng  

coef f ic ien ts  become t h e  var iab les .  

constants and if TD(S) and GD(S) are i t h  order ,  P(S) and C(S) are ( i -1) th  

order and the re  are 2 ti-1) var iab les ,  ha l f  of which are independent and 

In general ,  i f  CN(S) and TN(S) ape 

ha l f  of which are dependent. The design problem f s  res t ruc tured  i n t o  an 

optimization problem. 

i t y  [Eq. f. 24 13. 

is used t o  treat t h e  inequal i ty  cons t r a in t s  [Eqs, (2) and (25)]. 

st raint  equation [Eq. (2117 is t r ea t ed  using t h e  constrained de r iva t ive  

approach [Eqs, f 6 )  t o  ( 9  )I. 

The objec t ive  function is low frequency sens i t i v -  

A Sequent i a l  Unconstrained Minimization Technique (SUMT 1 

The con- 

The r e su l t i ng  Newton-Raphson algorithm [Eq *, 

(l4)l was used t o  obtain the  designs shown i n  Figs. 4 and 5 ,  
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The cost: of computing time must be considered minimal as compared 

to the cost of man hours required to solve the above multi-variable prob- 

lem by trial-and error. The only difficulty in setting up the program 

lies in obtianing the required partial derivatives [Eq, (1411 which is 

somewhat tedious. 

Alternate procedwes (Fletcher-Powell and a different choice of 

the vector R) were attempted, but the SUMT--constrained derivative- 

Newton-Raphson technique was far superior, and the resulting design 

exhibited excellent damping characteristics for  the roots of P(S) and 

C(S) * 
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PARALLEL TANGENTS 

Introduction 

The method of P a r a l l e l  Tangents (or f a r t a n )  as developed by Shah, 

Buehler and Kepthorne [l] is i dea l ly  su i ted  t o  coat  functions of t h e  form 

where 

and Q and M are quadrat ic  and monotonic cost functions respect ively.  

individual  parameters ( Z i l  are unconstrained. 

The 

I n  t h i s  r epor t ,  a p a r t i c u l a r  form of Partan known as Continued 

Gradient Partan is discussed. 

cost functions defined above is given along with general  comments regard- 

ing Partan 's  e f f ic iency .  This is followed by a descr ipt ion of the Partan 

computer program including modifications needed for problems having con- 

s t r a ined  parameters. 

flow cha r t s ,  t h e  appl ica t ion  of Partan t o  t h e  L e w i s  Fuel Valve problem is 

described. 

The algorithm for solving the  class of 

After a sec t ion  giving I / O  formats and program 

34 



search,  

ing t h e  

s evera 1 

Optimization Procedure 

The Partan algorithm serves as a master 

35 

program for t h e  parametw 

i n i t i a t i n g  t h e  search a t  any given s t a r t i n g  poin t ,  and then guid- 

search u n t i l  

p a r t s  : 

1, The 

2. The 

3. The 

4. The 

5 .  The 

termination. The Partan procedure cons i s t s  of 

Partan algorithm 

gradient ca l cu la t ion  

vector search (Golden Sect ion)  

cost ca l cu la t ion  

cons t ra in t  ca lcu la t ion  ( if any 1 

The Partan Algorithm 

L e t  t h e  set of parameters at  any s t e p  Cj> of the  search be denoted 

Then so corresponds t o  the  given s t a r t i n g  poin t .  According t o  t h e  Partan 

algorithm ( i l l u s t r a t e d  graphically i n  Fig. l), t h e  cost function gradient: 

Cay1 is evaluated a t  zo (and subsequently a t  z2, z4, . . , ) and 

t h e  optimum along t h a t  gradient vector is found a t  2, (and subsequently 

?$, g 5 ,  . . a , 2odd)B 
search rou t ine  reaches 8, (and la te r  E,, z,, . . , Ed,), the optimum 

5, is  then found along t h e  vector (2, - go) or i n  general (zdd - 'odd-3) ' 

This is known as an acce lera t ion  s tep .  

- even 

This s t e p  is ca l l ed  a gradien t  s t ep .  When t h e  

" 
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f f  the individual vector optimum points are exactly determined 3 
along precisely computed vectors, the optimum set of parameters having a 

quasi-quadratic cost will be found in 2N-1 steps. 

been shown to guarantee such convergence. 

No other procedure has 

If the cost function is not quasi-quadratic, it is often not 

desirable to exactly determine the vectors and their resulting optimum 

points (see Harkins [3]>. This inexactness introduces some amount of ran- 

domness into the search which is beneficial for problems having cost func- 

tions with highly complex contours in the parameter space. 

Gradient Calculation 

The gradient procedure estimates y by making perturbations about 

each zeven and measuring the change in cost. 
desirable for non-quasi-quadratic problems but is often necessary when Vy 

is too complex to determine analytically. 

require extra cost function evaluations and is therefore suitable only to 

problems where the cost may be quickly computed. 

In the gradient procedurer each 

This method is not only 

The method does, howeverS 

Ayi Y(Z,, ..., Z + aRi,*..,Z 1 - Y(Z)  i N 

i = 1,2,*..,N 

is evaluated where Ri is the range estimation of Zi and a, a constant 

(usually lo-'). Then the norm 
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is found and t h e  incremental change ( D i )  f o r  each Zi is computed, 

Di = BRi(Ayi/LSyY) 

where B is the  "step size" constant supplied by t h e  c a l l i n g  program, 

Vector Search 

The p a r t i c u l a r  vector  search used is t h e  golden-section search 

(see Wilde and Beightler [2]). 

subprogram i n  the  case of a gradient  search or using D i t s  given by 

Using the  Dits supplied by the  gradient 

for an accelerat ion search,  t h e  Zits are stepped along the  vector  (accord- 

ing t o  t he  s i z e  of 8)  and the cos t  ( y )  is computed a t  each point.  

search proceeds by e i t h e r  expanding or contract ing s t e p  sizes u n t i l  t h e  

optimal point along t h e  vector is reached. 

The 

As an optimal vector  point  (or eventually the optimum) is 

approached, B decreases. 

decrease only a fixed number of times (3 i f  the  cost function is "ridgy" 

or 5 if i t ' s  "smooth") while t h e m  is no r e s t r i c t i o n  on the  number of 

increases. 

E se lec ted  by the  program user ,  t he  Partan search is terminated, 

The cos t  subprogram must be supplied by the user.  

During each vector  search , B is allowed t o  

However, i f  during a vector  search,  8 decreases below a l e v e l  

The c a l l i n g  

program provides the  current  value of Z1, Z2, 

gram should re turn  t h e  corresponding cost. 

t h e  Zits, they can of ten  be entered by augmenting t h e  cost function. 

, % and t h e  subpro- 

If the re  are cons t ra in ts  on 



39 

Another method, which is used i n  t h i s  r epor t ,  is t o  set a f l a g  when any 

cons t ra in t  is violated.  

parameter and i n  t h e  next gradient  ca lcu la t ion ,  augments t he  v io l a t ing  

parameter's gradient .  

The f l a g  prevents acceptance of t he  nonfeasible 

where AFk/lAF( is the normalized gradient  of any violated cons t ra in t  

function with respect  t o  2 

Himmelblau [4]. 

This method was proposed by Klingman and 
j' 

Now t h a t  t h e  Partan technique has been described, some of i ts  

programing advantages a r e  apparent. 

mqu i r ing  less than one hundred in s t ruc t ions ,  

ments are minimal s ince  only the two previous tr ies are retained.  

Although the  inexact determination of y and each 3 

The program is r e l a t i v e l y  s h o r t ,  

The core s torage  require- 

degrades t h e  3 
convergence for quasi-quadratic cost functions ( idea l ly  2N-1 s t e p s ) ,  

Harkin has demonstrated t h a t  t he  number of s t eps  required is still pro- 

por t iona l  t o  t h e  dimension N of z. 
s teepes t  ascent techniques. 

Thus, Partan is superior  t o  normal 

A common non-quasi-quadratic cost  function used t o  measure con- 

vergence performance is Rosenbrock's function 

2 2  2 
y = loo(z ,  - z1 1 + (1 - X , )  

with go = (-1.2, 1) and p = 0. 

less than 180 cost function evaluat ions (less than 30 s t eps ) .  

Partan w i l l  converge t o  y 5 i n  

This is 
opt  
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superior to the normal steepest ascent method (does not converge), sec- 

tioning method (no convergence), Spider method (>400 cost function evalu- 

ations) and Simplicial method (>1200 evaluations). 

The Program 

The input data is read into the program via the master Partan 

program, The first card contains search parameter information and the 

following N cards contain the starting value and range of each Zi. 

CARD 1 Col 1-10 - E 
Col 11-20 - A 
Col 21-30 - N 
Col 31-40 - L 

CARD 2 C011-10 - 21 
Col 11-20 - R1 

CARD 3 Col 1-10 - 22 
Col 11-20 - R2 

CARD N 

(termination criteria) in E1O.O 
(alpha-perturbation) in E1O.O 
(number of Zits) in I10 
(no. of constraint eqs.) in 110 
(initial value) in E1O.O 
(range 1 In E10.0 
(initial value) in E1O.O 
(range 1 in E1O.O 

The flow charts appear on the following three pages. 

The program output lists the number ( W )  of parameters being opti- 

mized, the perturbation constant (a) and the termination criteria (E), 

Following this is a listing of the search and its result. 

(~o,~,,~,,...,z 1 the current step number (PI is given along with the 

total number of cost function evaluations, 

point are then listed, followed by the value of the cost function (y) 

At each point 

P 
The values of each Zi at that 

there. An optional printout,that shows how progress was made during the 

optimization is a listing of the step size parameter CB). 



(MASTER) READ input da a f 
- -  

0 
store 2 

I 
BC1 = Z 

YB = COST(z> evaluate cost at Zo 

I 
B = 0.1 

- 
evaluate grad at 2 

0 
I) = GRADtZ) 

Call GOLD(Z) vector search €or 2,; 
update for 2 

1 
J 

1 t 
t i 

i - i E i 7 ;  Z +-, store Z,,Z, ,Z,, etc. 

- -  - - - -  
BC1 = BC2 D = GRAD(Z) 

Call GOLD(?) 

BCl = BC2; update Bel 

t 
t 

call GOLD(Z~ C a l l  GOLD(Z) 

Yes 
If JJ = 0-5 = GRAD(Z) 2-BCI - D=-- calculate acceleration 

vector 3 no 

I acceleration 
step 

gradient I step I gradient step 
if flag indicates I constraint violation 

(GRAD) ENTER 

DF(j,kR) = RH(j) store value of j constraints 
at 2 

increment Xi 

calculate the  incremental 
cost 

1 
.---------cX(i) = Z ( i )  + A*R(i) 

DY(i) = COST(22 - YB 

DYM = DYM + DY(iI2 } 
DF( j ,i) = RH(j)-DF(j ,kR) calculate the incremental 

constraint cost 

reset j i  
s 
J 

1/2 normalize DY's DY = DY/DYM - -  

DFM(j) = IlFM(j) + DFM(jI2 



(GOLD) 

DFM = 0 

i Yes 

F JJ = Jk = 0 

Mark = 0 

kk = -3  

si = 0.0 

B = B-1.618 

I Y @ S  

yes 

Jk = 1 

If : 

X f  * 

DFM = 0 5 Yes 

-JJ = Jk = 0 

no 

s = 1.0 

YB = Y 

6 = 5.1.68 

I f Y B > O  RETURN 

-If Mark = 0 Y @S no 
step expansion 1 

If B < E STOP 

B = Bl2.63.8 

k =  

t 6 = 5/2.618 
I 

Mark = 1 
1 

kk = kk i 1 
+ 

t 
Y e =  

I 
If s = 0-If Jk = O T X f  : 

I 

If kk = 

( s t e p  contraction) . 
- 

-x = i? + sij 'I 
t 

I 

i t 

If kk > 1 RETURN 
Y = Cost(Z) 
- 
RH = Constr(j?) kk = kk + 1 

If Y > Y B ~ s  = -S 

/Yes 

i"'"'" If RH. > 0-78 = 

If B < E STOP 
YB '= Y 

j i = 2  t 
t 

If kk I RETURN 

1 
If 'YB > 0, RETURN kk = kk + f 

4 

RETURN 

(uniblock search 1 
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Application t o  Fuel Valve Problem 

The p l an t  G(s) is shown below: 

c -  

2 st  17500 ' c d  GI(s) 87.5 amp/volt 

1 1 

where 

i n  - s2 (sit12561 
93 G1(s) = 

[ ( ~ t 1 9 7 0 ) ~  t 4030][(~+488)~ t 11902] 

and 

11.995x1011 s - 1 
sea G2(s) = 

(et3342j2 t 178202 

The desired response with 500 Htz bandwidth and 0.707 damping 

ra t io  is 

m [ s 2  3 2 9 ~ 1 0 ~  3 2 9 ~ 1 0 ~  6x10 3 5x10 
t a s )  = 1/ 

3 3 ] [ 12 .:l106 1 2 . 3 ~ 1 0  
4x10 t 4 . 8 ~ 1 0  s 

t o  be obtained using t he  following configuration (Fig.  2). 

C(s) = G(s) E ' ( s )  
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Fig. 2. Fuel Valve Block Diagram. 
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and 

by the  

and 

For a given G(s) 

transformations 

I 

and C(s)/R(s), H ( s )  and B ( s )  are rebated t o  P ( s )  

The computer program is modified t o  pick P(s) such t h a t  both B(s) and 

P ( s 1  have LHP roots and such t h a t  low frequency s e n s i t i v i t y  is optimally 

small. 

The coe f f i c i en t s  of 6 which determine P ( s )  are constrained such 

t h a t  P(s) is s t ab le .  

2 2 2 
P ( s )  = ( 8  + P p  + Pas + P , N S  + P p  + P , ) ( s  + P 6 9 + P,) 

Thus, a l l  (Pl ,  P p ,  . . ., P,) must be  constrained pos i t ive .  

C(s) is stable, the  Routh-Hurwitz column coe f f i c i en t s  are constrained 

pos i t ive .  

polynomial B ( s )  t o  have B "free s." 

To insure  

Low frequency s e n s i t i v i t y  is improved by t ry ing  t o  force t h e  
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Since Pastan is constrained from enter ing  a nonfeasibbe reg ion  

(where a c o n s t r a i n t  is v i o l a t e d ) ,  t h e  i n i t i a l  po in t  muse not v i o l a t e  any 

cons t r a in t .  

s e l ec t ed  such t h a t  both P ( s 1  and B(s) are stable without some previous 

knowledge. 

program starts with only those c o n s t r a i n t s  t h a t  are not v io l a t ed .  Using 

each cons t r a in t  which is v io la t ed  as a cost func t ion ,  each c o n s t r a i n t  is 

eventually s a t i s f i e d .  Then t h e  program optimizes t h e  des i red  cost func- 

t i o n  (low frequency s e n s i t i v i t y  i n  t h i s  case). 

Experience has shown t h a t  an i n i t i a l  po in t  cannot be 

Therefore, t h e  Partan program has  been modified so t h a t  t h e  

The progress toward t h e  s o l u t i o n  of t h e  f u e l  valve problem can be 

seen i n  t h e  output l i s t i n g .  

P = (10 , l o4 ,  l o8 ,  lo4, l o 8 ,  l o4 ,  10  

Routhian a r r a y  had t h e  form 

The l i s t i n g  shows t h a t  a t  t h e  i n i t i a l  po in t  
1, 8 ( se l ec t ed  a r b i t r a r i l y )  t h e  

Since 

first column, 

20 R7 is t h e  first negative value (-2.123~10 

t h e  c o s t  func t ion  y is set equal t o  R7 and t h e  Partan 

reached i n  t h e  

search is initiated. After one g rad ien t  c a l c u l a t i o n  and t h e  r e s u l t i n g  
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19 vec tor  search ,  t h e  cost func t ion  (R7) is made p o s i t i v e  (5 .349~10 

some po in t  F' on t h e  grad ien t .  

) a0 

The Routhian a r r a y  is  now checked for s i g n  changes beyond R7 and 
25 t h e  l a s t  c o e f f i c i e n t ,  R8,  is found negative (-1461x10 

g1 = zto ,  a s i n g l e  grad ien t  search forces R e ,  t h e  new cost func t ion ,  pos- 

i t i v e  (1 .402~10  

1. S t a r t i n g  a t  

23 
) a t  @'I. Thus, after twenty func t ion  eva lua t ions ,  t h e  

Routh Table ind ica t e s  t h a t  for t h e  stable polynomial P(s) given by t h e  

c o e f f i c i e n t  PI', t h e  polynomial B(s) is also stable (LHP roots). 

For good low frequency s e n s i t i v i t y ,  it is des i r ab le  t h a t  t h e  

This c o e f f i c i e n t  is se l ec t ed  as 

After 13 

zeroth power of s c o e f f i c i e n t  be zero. 

t h e  cost func t ion ,  and its i n i t i a l  value a t  F" is 1 . 6 5 3 ~ 1 0 ~ ~ .  

acce le ra t ion  and g rad ien t  s t e p s  involving 116 func t ion  eva lua t ions ,  t h i s  

c o e f f i c i e n t  is reduced 16 orders  of magnitude t o  1 . 0 0 2 ~ 1 0 ~ ~ .  

nomial P(s) is 

The poly- 

4 6  9 5  (s + 12,310)(s2 + 15.450s + 43313 s7 + 5 . 9 ~ 1 0  s t 1 . 2 9 ~ 1 0  s 

13 4 16  3 15  2 1 2  + 1 . 2 5 ~ 1 0  s + 4 .54~10  s + 3 .82~10  s + 1 . 0 7 ~ 1 0 ~ ~ ~  -t 1,002x10 

and t h e  corresponding B(s) is 

7 4 6  9 5  13 4 s + 5 . 4 ~ 1 0  s + 1.19~10 s 4 1.38~10 s 

16 3 20 2 23 27 + 9 .15~10  s + 3.53~10 s + 6.82~10 s + 1 . 1 8 ~ 1 0  

The r e s u l t  shows t h a t  t h e  improvement of low frequency s e n s i t i v -  

i t y  i n  t h e  output has been achieved by a controller with three poles e t  
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about 0.003 sec-l, and t h e  other  poles a t  frequencies grea te r  than 32,000 

see-'. 115 The low frequency gain w i l l  be on the  order of 10 

The r e s u l t  also indicates  how t h i s  search technique can be 

. 

improved and how very high order problems of t h i s  type can be t reated.  

Since t h e  i n i t i a l  guess 

th i rd  order,  complex p a i r  of roots ,  t h e  number of search parameters 

could ac tua l ly  have been reduced t o  three. 

putation time for each of t h e  six gradient calculat ions by a f ac to r  of 

3/7, since fewer perturbations a re  required. Also, if P(s) were given 

as 13 th  order instead of 7th order,  t he  i n i t i a l  guess could have been 

was a polynomial wi th  a neg-real roo t  and a 

This  would have reduced com- 

(s t 10,000)(s2 t 10,000s + 1 O 8 P  

i . e . ,  sti l l  only three  search parameters. 

tee t h a t  a solut ion for such a P ( s )  exists. 

verge t o  a s t ab le  B ( s ) ,  the  i n i t i a l  guess could be generalized t o  

There is, however, no guaran- 

If the  search f a i l e d  t o  con- 

2 8 3  2 
t 10,000s t 10 ) ( 8  (€3 t lO,OOO)(s t 40,000s t 2 ~ 1 0 ~ ) ~  

and the  search conducted with f i v e  parameters, etc. 

Conclusion 

Partan is an e f f i c i e n t  program, which can be modified t o  handle 

complicated, constrained cost functions. 

problems where the  cost is e x p l i c i t  but t he  gradients must be computed by 

perturbation. 

X t  is especial ly  su i ted  t o  
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PATTERN SEARCH 

Introduction 

This report describes the use of an optimizing search procedure for 

th; design of a control system where some of the state variables of the 

system are unavailable. This design procedure is useful in achieving an 

approximate closed-loop transfer function rather than obtaining an exact 

closed-loop transfer function. 

the complexity of the compensation is reduced over the state variable 

design. 

tem which minimizes the response of the shock wave position to pressure 

disturbances at the compressor. 

with an initial choice of parameters and makes small changes in these 

parameters until an improvement is obtained. 

until no further improvement is obtained. 

fruitful, successively smaller steps are taken. 

procedure has found a local, minimum. 

The advantage of this procedure is that 

This procedure is applied to the design of an inlet control sys- 

The search procedure described starts 

Then larger steps are made 

When the larger steps are not 

At this point the search 

The advantage of this type of procedure over a more classical design 

The design may include constraints procedure is its extreme flexibility. 

on the parameters, a variety of objectives, and a variety of parameters 

in the compensator. The performance objectives may include either time 

domain or frequency domain parameters. 

be used to select an initial choice of parameters. 

therefore more adaptable to practical applications where a l l  the state 

Initial design considerations may 

This procedure is 

55  
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var i ab le s  are unavailable or o the r  l i m i t a t i o n s  which make o the r  design 

procedures impractical .  

P a t t e r n  Search 

The p a t t e r n  search is baaed on the  following philosophy: 

1. If an improvement is made i n  a given d i r e c t i o n ,  con- 

t i n u e  t o  move i n  t h a t  d i r ec t ion .  

If an  improvement is made with a small change i n  param- 

eters , t r y  a b igger  change, 

2, 

The p a t t e r n  search has two modes of operation depending on t h e  

number of previous successes or failures: 

1. 

\ 

2. 

Mode 1. Successful Move. 

If a success fu l  move has been made, then t r y  

another larger move f n  t h e  same d i r ec t ion .  An addi- 

t i o n a l  increment t o  t h e  l e f t  or r i g h t  is added i n  if 

t h e  previous success fu l  move was made by a l t e r i n g  the  

d i r e c t i o n  of t h e  move. 

mode is wed. 

Mode 2 .  Local Search. 

If no Success is made, t h e  next 

Small moves are made i n  t he  same d i r e c t i o n  as t he  

last success and a t  r i g h t  angles  t o  t h i s  d i r e c t i o n .  

one or mope successes are made after these  moves, then 

t h e  system r e t u r n s  t o  Mode 1. 

If 

If no improvement is 

made, a smaller s t e p  is t r i e d .  If more 

t i o n s  i n  s t e p  size 

on t h e  presumption 

are made, t h e  search 

tha t  a l o c a l  minimum 

than t en  reduc- 

is terminated 

has been found. 
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The following app l i ca t ion  is t o  demonstrate t h e  use 

of t h i s  procedure for a jet engine con t ro l  system. 

Details of t h e  computer program are given i n  t h e  last 

sec t ion .  

The 40-60 I n l e t  Control Problem 

The o u t l i n e  of t he  system is shown i n  Fig. 1, and t h e  40-60 i n l e t  

c o n t r o l  system is shown i n  block diagram form i n  Fig. 2. 

t o  minimize t h e  response of t h e  shock wave pos i t i on  x t o  disturbances a t  

t h e  compressor s i d e  of t h e  i n l e t .  

occurs i n  f r o n t  of G(s) which descr ibes  t h e  dynamics of t h e  i n l e t .  

e x i t  p ressure  Pe is r e l a t e d  t o  t h e  undelayed shock pos i t ion  by t h e  t rans-  

fer func t ion  P ( s 1 .  

shunting of a i r  through s i x  bypass doors whose dynamics are D(s). 

response of t h e  system t o  d is turbances  when no c o n t r o l  is ppesent is 

shown i n  Fig. 3. 

whose dynamics are C(a)  t h a t  w i l l  result in a lower response than G(s) 

shown i n  Fig. 3. 

It is des i red  

In  t h e  block diagram t h e  no i se  input  

The 

The c o n t r o l  of t h e  shock pos i t i on  is af fec ted  by t h e  

The 

The ob jec t ive  of t h e  system is to  provide a compensator 

( 388.12) (s+80.3fj172.20 )(9+173.16ij 332.63 )(s+75.71& j 575.04) 
G(s) - (s+46 9 (s+44.58*j28l. 49 (s+84.22fj477.63 )(s+130,24fj738.611 

st1010 P ( s )  = lolo 

D ( s 9  = 1 . 3 0 7 3 ~ 1 0 ~ ~  
s(s+2OOO)(s+318. %j1899)(83+3890 .38s2+2. 1038~10~s+J..76187xlO~~) 
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Performance Spec i f i ca t ion  

A t r a n s f e r  function is spec i f i ed  by t h e  user  which determines t h e  

The compensator C(s)  which has  two poles  desired response of the  system. 

and two zeros is se l ec t ed  t o  minimize t h e  mean square d i f f e rence  between 

t h e  des i r ed  t r a n s f e r  func t ion  and t h e  a c t u a l  closed-loop t r a n s f e r  func- 

t i o n  over a l l  frequencies.  

The parameters which spec i fy  t h e  compensator are constrained so t h a t  t h e  

system is s t a b l e .  

p a r t  of t h e  a c t u a l  t r a n s f e r  function. The subroutine ERR cons t ruc ts  t h e  

d i f f e rence  between t h e  a c t u a l  t r a n s f e r  func t ion  and the  desired t r a n s f e r  

func t ion  for any p a r t i c u l a r  ga in ,  po le  pos i t i on ,  and zero pos i t i on  of 

C(s). 

squared of t h e  error over a l l  frequencies.  

The a c t u a l  t r a n s f e r  func t ion  should be stable. 

The subroutine PLANT is used t o  cons t ruc t  t h e  f ixed  
’ 

The subroutine INTSQ evalua tes  the  i n t e g r a l  of t h e  magnitude 

The d e t a i l s  of t hese  programs 

are included i n  t h e  end of t h i s  s ec t ion .  

Computer Resul t s  

The des i r ed  t r a n s f e r  func t ion ,  T D ( s ) ,  was selected t o  be 

388.12s 
TD(s) = ?s+30)(s+388.12) 

The a c t u a l  t r a n s f e r  func t ion  T ( s )  between t h e  pressure  disturbance and 

the undelayed shock pos i t i on  is given by 
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If the numerator of G(s) is wr i t t en  GN and the denominator is wri t ten GD, 

and i f  t h e  poles of C ( s 9  are selected t o  be very large, then C ( s 9  is 

approximately given by the  numerator polynomial, C. 

by t he  ratio DN/DD and the  pressure transducer by P. 

function becomes 

The doors are given 

The ac tua l  t ransfer  

GN *DD 
T(s) = D*GD+DN*P*CN*DN 

The numerator TN is independent of the choice of the  compensator. 

I t  is calculated by the subroutine PLANT. 

ducts are calculated i n  the same subroutine: 

Similarly,  the  following pro- 

Then whenever a new value for C ( s )  is chosen where 

the  a c t u a l  transfer function becomes 

The procedure is car r ied  out i n  t h e  subroutine ERR. 

f r o m  t he  in t eg ra l  of 

The e r ro r  is formed 
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The subroutine INTSQ is used t o  ca lcu la te  t he  in t eg ra l  of the squared 

magnitude of the above polynomial. If the system is unstable, it is 

detected by the  subroutine ROUTH and a large value of the  objective func- 

t i on  is returned. 

The r e s u l t s  of the  computexl program are the  compensator whose 

parameters are 

2 
( 8  + 0.6*15788 + 157s2) C(s) = 1414 

is7a2 

This compensator y ie lds  the  closed-loop t ransfer  function shown 

The response is s igni f icant ly  b e t t e r  than the open-loop i n  Fig.  4. 

response a t  frequencies below 100 HZ but approximately 10 db worse i n  the 

unity gain crossover region. The problem is more evident from a study of 

t h i s  r e su l t .  A l a rge  feedback is needed a t  frequencies below 100 Hz. 

However, a t  frequencies above 100 Hz, the doors have a rapidly decreasing 

response which creates a very la rge  phase s h i f t  a t  the  point where the  

loop gain is unity which r e s u l t s  i n  an unstable system. Ei ther  the  phase 

s h i f t  must be decreased i n  magnitude or the  gain crossover must be a t  a 

lower frequency. If the  feedback gain is reduced, the system w i l l  respond 

j u s t  as an open-loop system a t  frequencies above the  unity gain point 

which is not en t i r e ly  sa t i s fac tory .  By adding more zeros i n  the  region 

given by C(s), a b e t t e r  response 4s possible,  as shown i n  Fig. 5 .  

The numerator of compensator associated with Fig. 5 is: 

2 8,010 (s + 0.8.1987s + 19872)2(s + 3964) C(s) - 
3964( 1989 l4 
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By adding f i v e  zeros, t h e  ~esponse is always below -10 db and is smal1eP 

than -20 db for a l l  frequencies below 100 Hz. 
b 

Computer Program 

The r e l a t i o n s  between t h e  subroutines of t h i s  program are shown 

i n  Fig. 6 .  The t r a n s f e r  func t ions  associated with Fig. 2 which are inde- 

pendent of C(s) are computed i n  t h e  subroutine PLANT for use i n  ca l cu la t -  

ing  T ( s ) .  

s t a r t i n g  poin t  for t h e  p a t t e r n  search. 

s e l ec t ed ,  t h e  subroutine ERR uses these  new values to  c a l c u l a t e  t h e  

t r a n s f e r  func t ion  T ( s ) .  This t r a n s f e r  function is subtracted from t h e  

des i red  t r a n s f e r  func t ion  D ( s )  and t h e  r e s u l t i n g  e r r o r  func t ion  E ( s )  is 

squared and in t eg ra t ed  by t h e  subrout ine  INTSQ. INTSQ uses t h e  subrou- 

t i n e  POLYSQ t o  c a l c u l a t e  t h e  square of: t h e  numerator of E(s). If t h e  

r e s u l t i n g  i n t e g r a l  Y is bigger ,  a local search i n  t h e  v i c i n i t y  of t h e  

las t  success is made. 

t h e r  improvement is made. 

The i n i t i a l  values of t h e  parameters are used t o  provide a 

When a new set of parameters are 

Successively smaller s t e p s  are taken u n t i l  no f u r -  

A l i s t i n g  of t h e  complete program follows. 
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i Compute i n i t i a l  

transfer function 

1 

pattern search q u c c e s s f u l  Move 
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integral /error  

i f  success  

Fig. 6. General Flow Diagram of Pattern Search Program. 
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VARIABLE METRIC 

Introduction 

This report  describes the var iable  metric optimization scheme 

(hereaf ter  referred t o  as var iable  metrics) and its appl icat ion to  the  

design problem for an i n l e t  control  system of an air-breathing je t  engine. 

The appl icat ion s t ra tegy  seeks t o  force the total  closed-loop response of 

the  system to  match a desired frequency response over a range of frequen- 

cies from 1 cps t o  151 cps. 

t o t a l  squared error over t h i s  range of fvequencies. Successfuf, physic- 

a l l y  rea l izable  cont ro l  of t h e  i n l e t  system is achieved for a var ie ty  of 

parameter values, with system s t a b i l i t y  checked i n  each case. 

Variable metrics is used t o  minimize the 

The general  type of problem, t o  which var iable  

cable, i s  the  optimization of a scalar-valued function 

ables  x 

optimization problem. 
j: an 

with respect  t o  the  N values o f  these x 
j' 

"y" is an a rb i t r a ry  performance 

metrics is appl i -  

y of N real var i -  

N-dimensional 

index, descr ipt ive 

of the effect iveness  of a control  system. 

'techniques are of r a the r  general  app l i cab i l i t y  i n  the  design of optimal 

control  systems, 

Thus, s ca l a r  optimization 

Three d i s t i n c t  advantages of variable  metrics over a l l  other 

optimization techniques, which the  author has s tudied,  are: 

1. In terna l  determination of ' the search path, leading t o  

an optimum. 

2, Adaptability t o  general  s ta t is t ical  study of a par t ie -  

u l a r  problem's solut ion properties.  

79 



3. Higher resistan to pr 

ao 

of local optima. 

Four distinct: disadvantages of variable metrics are: 

1. Lack of external control over step size. 

2. Sensitivity of reliable convergence to values of con- 

vergence parameters. 

Performance dependent on particular one-dimensional 

search method used. 

Storage requirements o f  two N x N matsices for an 

N-dimensional optimization problem. 

3 .  

(This is sometimes advantageous.) 

4. 

Optimization Procedure 

The operation of variable metrics is very simple indeed: One 

tight computation loop is executed and reiterated until convergence. 

purpose of the technique is the minimization of a real-valued function 

The 

y(x1. 

"optimum". 

educated guess, at X* on the part of the user. 

The point x*, at which y achieves its optimum value, is called an 

An initial point xo in the search for x* is chosen, as an 

Initialization 

1. The input starting point xo in N-space is used to 

obtain an initial gradient vector Vyo = Vy(xo). Put 

= IN for N dimensional identity matrix fN, and put Ho 
j = 1. 

Computation Loop 

2. A point x is found on the line through x in the 
j j -1 

direction of H Vy by one-dimensional optimization j-1 j-1 
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of the  value of y(x) along t h i s  l i ne .  Upon the deter-  

mination of Vy 

Put j = j t 1, and reenter  again a t  s t ep  2. 

= Vy(x ), the  matrix H is calculated.  
j 3 j 

3. 

For example, a point x is found on the l i n e  through xo i n  the d i rec t ion  .. 3. 

of HoVyo by one-dimensional optimfzaiton, where H ,  represents a "metric", 

which a ids  r e l i a b l e  convergence, by 

the  same di rec t ion  ( l 'osci l la t iontq) .  

Vy(x ), matrix H is calculated and 

t h a t  Ho = IN means t h a t  the i n i t i a l  
1 1 

i 

prohibit ing repeated searches along 

Upon the  determination of Vyl = 

t h e  s teps  are r e i t e r a t ed .  Notice 

(j = 1) one-dimensional optimization 

is merely a gradient search along the  l i n e  through xo i n  the d i rec t ion  of 

The metric matrix H. is the  sum of two other i n t e rna l  matrices. I 
When computing each of these las t  two matrices, there is a point a t  which 

divis ion occurs. Now, divis ion by zero is nut permitted, but convergence 

of t he  computations is nevertheless represented by a d iv isor  which is 

extremely small (numerical zero). 

by the  magnitude of the  d iv isors  p r i o r  to  divis ion.  

Consequently, convergence is checked 

Thus, af ter  N itera- 

t ions ,  convergence is tes ted  a t  two places i n  each addi t ional  i t e r a t i o n  

of the  computation loop. The reason for waiting for the  completion of N 

i t e r a t ions  is the  prevention of premature convergence t o  "pseudo-optima", 

u n t i l  a l l  d i f f e ren t  d i rec t ions  of search have been checked a t  least once. 

Here is a summary of t he  minimization procedure used by var iable  

metrics : 

.I.. Input N-vector xo, calculate Vyo = Vy(xo). put Ho = IN 

for N x N i den t i ty  matrix IN, and set j = 1. 
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2. Search for "rninfmurn" x .  on x - aHj-lVyj-l for 
3 j -1 

j 0 < a S 1, c a l c u l a t e  vy 

(while twice checking for  convergence), set j :: .5 i 1, 

= Vy(xj), compute matrix H 
j 

and repea t  2 .  

The reader is referred t o  t h e  book Foundations of U p t h h a t i o n  by 

Wilde and Beight le r  f o r  an equiva len t ,  bu t  d i f f e r e n t ,  desc r ip t ion  of t h e  

de f l ec t ed  g rad ien t  vers ion  of v a r i a b l e  metrics popularized by F le t che r  and 

Powell. For a detailed expos i t ion  of t h e  v a r i a b l e  metric method of o p t i -  

mizat ion,  r e fe rence  can be made t o  F le t che r  and Powell 's  paper of 1963, or 

t o  "GOSPEL" by Dr. Huelsman a t  t h e  Universi ty  of Arizona (September 1968). 

Discussion of Computer Programs 

Subroutine FP r ep resen t s  t h e  d i g i t a l  mechanization of the  afore- 

mentioned v a r i a b l e  metric minimization scheme. 

t i n e ,  input  and output  data are t r a n s f e r r e d  by means of c a l l i n g  sequence 

As FE, is merely a subrou- 

(c.f., computer l i s t i n g  a t  t h e  end of t h i s  s ec t ion ) .  

I n  order t o  func t ion ,  FP needs only f i v e  b i t s  of information and 

a lo t  of storage: 

j 
N 

XO 

CRIT - convergence criterion ( n m r i c a l  zero) 

- t h e  number of unknown parameters x 

- t h e  i n i t i a l  estimate vec to r  of unknown parameterg x 
j 

L - t h e  maximum number of i t e r a t i o n s  of t h e  v a r i a b l e  
metric loop 

M - t h e  number of i t e r a t i o n s  per  search  of t h e  one- 
dimensional search  rout ine .  

The inpu t s  am unal te red  by t h e  program, and t h r e e  outputs  are ca lcu la ted :  
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x -  

QINV - 

Y -  

the  f i n a l  (and optimal) estimate vector of unknown 
parameters x 

the  estimate of the  matrix of second partial deriv- 
j 

a t ives  a t  the  optimum. This is t h e  storage area for 

t h e  metric matrix M. 

t he  optimized value of the  scalar function y(x) 

Two other var iables  ICALL and I C  are of in t e re s t .  ICALL is 

incremented by 1 for each time t h a t  FP requires  a gradient evaluation. 

I C  is incremented by 1 for each time t h a t  the one-dimensional minimiza- 

t i on  requires  a function evaluation. 

and is discussed on pages 99 t o  80.  

The flow diagram appears i n  Fig. 1 

The various N-dimensional buffers accomodate cur 'rent and previous 

gradients,  s t e p  sizes, search vectom, and a scratch buffer for matrix 

manipulations. 

ous M x W matrix Hk-l t o  obtain the  current matrix Hk. 

two opportunities for  convergence tests. 

kept to  a minimum because a l l  atorage buffers  must be furnished by the  

user with FP requir ing only enough memory locat ions t o  perform mult ipl i -  

cat ions,  addi t ions,  etc. 

Two N x N matrices are calculated and added t o  t h e  previ- 

This provides the  

Storage requirements have been 

Two essen t i a i  inputs by t he  user ape a function generator along 

with a gradient generator. 

made ava i lab le  t o  the program. 

operations are performed by the  subroutine GRADY. 

Sections i s  used for one-dimensional minimization. This is mechanized i n  

subroutine GOLDEN. 

found i n  the  aforementioned reference of Wilde and Beightler. 

Comparative values of y(x) and Vy(x) are thus 

In t he  current formulation, both of these 

The method of Golden 

Descriptions of the  method of Golden Sections can be 
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Initialize 
Parameters 
i 

c 

. 

GRADY 

Compute 
Squared 
Error 

Gradient 

' 

Recompute 
Metric 
Matrix as . 
Sum of Two 
Matrices 

*Check for exit condition of convergence after N iterations, 

Fig. 1. Flow Diagram of Variable Metrics Program FP. 
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Application to Inlet Bypass Door Servo 

This particular example system is diagrammed on page 69. 

ring to the diagram of t h i s  particular problem, the symbols a l l  represent: 

Refer- 

transformed functions of the complex frequency p: 

(p + x3 + jx2)(p + x3 - jg2) 
( p  t 4000)2 

C(p) = Xl 

G(p) = 371.5 (pt80.29+f172.2)(~+80 .29-3172.4) (~+173.16tj332.62) [m] ?p+44.57tj281.49 )(pt44.57-j281,49 )(p+84.24+j477.63 1 

(p+173.16-j332.62 )(p+75 69+j 575 03)(p+75 69-j 575.03) 
(~+84.24-j477.63)(~+130.2+j738.6)(~+130.2-j738.6) 

The closed loop transfer function of the servomechanism is seen 

from the figure to be 

where the component transfer functions are given below: 

I 
(p+338.5+j1899)(~+318.5-j1899) 
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Aw is the  frequency spectrum of input addi t ive  noise,  and Ax’ is 

t h e  frequency content of the undelayed shock posi t ion t o  be regulated.  

is the  f ixed i n l e t  dynamics; P is the frequency r e l a t ion  between shock 

posit ion and e x i t  pressure; 

G 

C is the  compensator of t h e  form 

and D gives the 

fixed except C,  

parameters, K = 

Y 

(P + Po)(P + Go) 
( p  + a12 

r. 

K ¶ 

dynamics of the  bypass door. 

and the  whole problem is t h e  search for  three control l ing 

xl, Po = x3 + j x  

All t ransfer  functions are 

and Po = x 3  - jx,, i n  order t h a t  
2 ’  

be a minimum. Computer r e s u l t s  give sa t i s fy ing  ver i f ica t ion  of predic- 

t ions. 

I 

Numerical Results 

F i r s t l y ,  the  frequency response, which it is desired t o  match, is 

uniformly 40 db down o r  more over t h e  range of frequencies between 1 and 

151 cycles per second. 

Secondly, a chart of r e s u l t s  can be given below: 

1 

6 x IO-’ 
1.0 
1000 
10024 
100007 

x 

10’ 

3 X 2 x 
- _ I  

248 142 
240 142 
248 142 
86.1 778 
-192 2435 

222 551 

Y 
13.9 
13.9 
13.5 
3.2 
0.02 
0.004 

2 

0.4 
0.5 
2.1 
4.1 

39.0 

- 

34.8 

S t a b i l i t y  

Yes 
Yes 
Yes 
Yes 
No 

? 
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The e n t r i e s  beneath t h e  l abe l  2 stand fop the  minimum at tenuat ion i n  db 

of t h e  closed-loop frequency response over t he  range of frequencies from 

1 t o  1 2 1  cycles per second. 

Low frequency sens i t i v i ty  appears t o  decrease wi th  increasing 

values of x1 i n  t h e  formula . 
2 2 (p  + x,) + x2 

C(p) = x1 
(p  t 400012 ' 

However, previous s tud ies  have demonstrated t h a t  it is insuf f ic ien t  t o  

merely have C(p) = x and increase x i n  order t o  reduce low frequency 1 1 

response because ing tab i l i t y  ccurs as it appears to do i n  the  runs of 

the  table. 

Conclusions 

This paper has demonstrated t h e  appl icat ion of a powerful optimi- 

zation s t ra tegy  for the  case of cost functions, which can be wri t ten as 

t h e  r a t i o  of two polynomials, 

combinations of acceptable parameter values for a cont ro l le r ,  which 

s t a b i l i z e s  and minimizes the  low frequency s e n s i t i v i t y  of an I n l e t  Bypass 

Door Servo. 

The appl icat ion is the  discovery of several  

In reference t o  the  schematic system diagram on page 69,,suitable 

combinations of xlS x2* and x3 i n  
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= 248, x3 = 142, and x f 10024, x2 = 86.1, 6 x lo-', x2 1 are x 1 
x3 = 778. 

The value of t he  approach taken i n  t h i s  paper is t h a t  i ts  success 

is independent of the  par t icu lar  numbers used t o  specify the  component 

t r ans fe r  functions, and it converges rapidly and r e l i ab ly  fo r  lower 

degree problems while being simultaneously r e l i a b l e  a t  higher degrees. 
. 
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